



14 - 17. april 2025, Hotel Zlatibor Resort, Zlatibor

Evaluacija mera za uštedu energije na postojećim stambenim zgradama na Novom Beogradu upotrebom modeliranja energetskih performansi zgrada/ Evaluation of Energy Conservation Measures for Existing Residential Buildings in Novi Beograd Using Building Energy Modeling

Dr. Dimitrije Manić, prof. dr. Mirko Komatina, dr. Dragi Antonijević, prof. dr. Olivera Ećim-Đurić, prof. dr. Dejan Ivezić

#### Pozadina i motivacija / Background & Motivation

- e Buildings account for ~40% of energy use and ~30% of global GHG emissions
- Serbian housing stock is largely built before modern energy standards
- Many Novi Beograd buildings (1960s–80s) lack insulation and have outdated heating
- Improving energy efficiency in residential buildings is key to Serbia's energy transition
- e Aligns with EU Green Deal and Energy Community goals





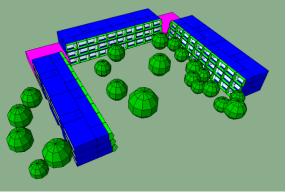
### Pozadina i motivacija / Background & Motivation

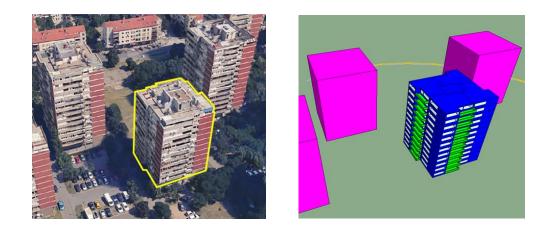






#### Cilj istraživanja / Objective of the Study


- Analyze potential for energy savings through retrofits in Novi Beograd
- Use dynamic building energy modeling (BEM) instead of static methods
- e Assess impact of
  - Upgrading thermal envelope (walls, roofs, windows)
  - Reducing infiltration (uncontrolled air leakage)
  - Implementing hybrid heating systems with renewable sources (heat pumps + DH)



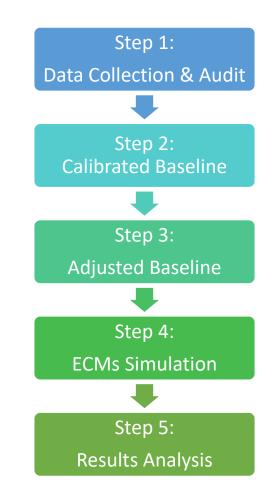



- E Lamella-type (D4) Block 45
  - Low-rise, large envelope area, higher baseline heating use
- e High-rise (E6) Block 70
  - Smaller façade-to-volume ratio, more wind-driven infiltration
- e Represent typical residential building stock in Novi Beograd
- Energy audits, architectural drawings, and historical data used








# ENERGETIKA 2025



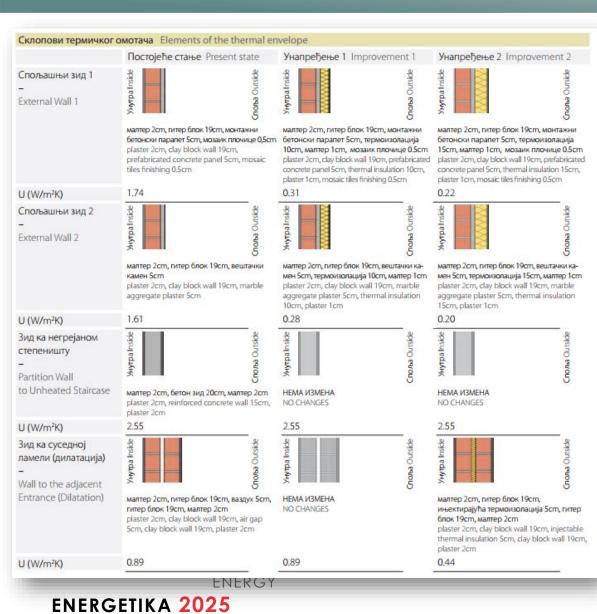
#### Metodologija i simulacije / Methodology & Simulation Process



- e Building record drawings, site audits, and utility data from heating provider
- Weather data: TMY (Typical Meteorological Year) for Belgrade
- Modeling platform: IES VE, compliant with ASHRAE 140 and ISO standards
- Two key models:
  - Calibrated Baseline: matched to actual 2014/15 heating data
  - Adjusted Baseline: post-retrofit assumptions (e.g. window replacement rate)
- Infiltration modeled as constant airflow per m<sup>2</sup> façade area



#### Mere za ustedu energije / Overview of ECMs


- e Envelope insulation: Add 10 cm (Imp. 1) or 20 cm (Imp. 2) of thermal insulation
- Window replacement: Double-glazed (U=1.5 W/m<sup>2</sup>K) or triple-glazed (U=1.0 W/m<sup>2</sup>K)
- Infiltration reduction: Caulking, sealing—modeled separately for clarity
- Packages combine envelope, windows, and infiltration upgrades
- e Realistic, locally available materials and methods used





#### Mere za uštedu energije / Overview of ECMs





|                                                          | Постојеће стање Present state                                                                                                                                                                                          | Унапређење 1 Improvement 1                                                                        | Унапређење 2 Improvement 2                                                                                                                                   |
|----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Прозори и балконска<br>врата<br>–<br>Windows and Balcony | 14<br>34                                                                                                                                                                                                               | 2                                                                                                 |                                                                                                                                                              |
| Doors                                                    | Дрвени, двоструки са размакнутим<br>крилима (уска кутија) и једноструким<br>стаклом, Дрвена <i>еслингер</i> ролетна<br>–<br>Wooden, double frame, double sash (narrow<br>box) with single glazing. Wooden roller blind | Дрвени са двослојним изолационим<br>нискоемисионим стакло-пакетом<br>испуњеним инертним гасом<br> | ПВЦ са трослојним изолационим<br>нискоемисионим стакло-пакетом<br>испуњеним инертним гасом<br>–<br>PVC, triple glazed low-E glass unit, inert gas<br>filling |
| U (W/m²K)                                                | 3.50                                                                                                                                                                                                                   | 1.50                                                                                              | 1.00                                                                                                                                                         |
| <b>Улазна врата</b><br><del>-</del><br>Entrance door     | Дрвена, дуплошперована<br>–<br>Wooden, plywood leaf                                                                                                                                                                    | НЕМА ИЗМЕНА<br>-<br>NO CHANGES                                                                    | Метална, крило са термоизолационом<br>испуном<br>–<br>Metal, insulated leaf                                                                                  |
| U (W/m²K)                                                | 3.00                                                                                                                                                                                                                   | 3.00                                                                                              | 1.50                                                                                                                                                         |



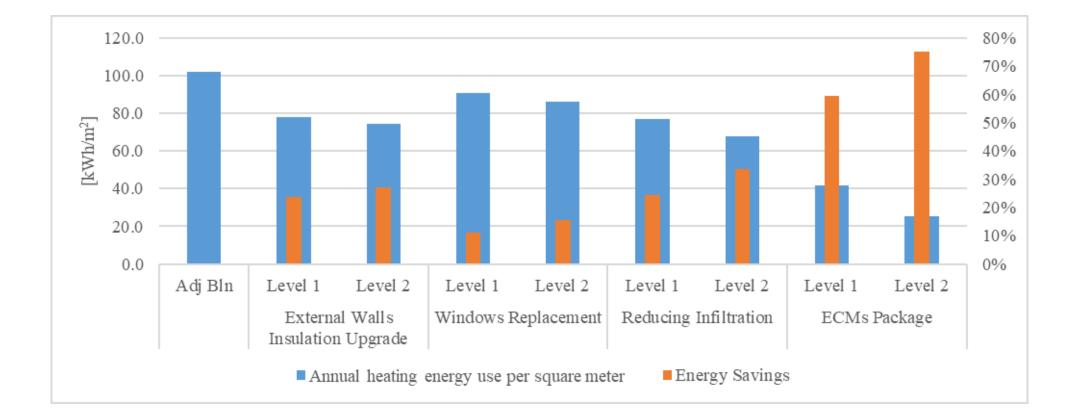


#### Hibridni sistem grejanja / Hybrid Heating System

- Modeled air-to-water heat pump (ASHP) with district heating (DH) backup
- $\bigcirc$  ASHP active when outdoor air  $\ge$  4 °C; DH used when colder
- Heating switchover temp based on ASHP capacity and outdoor reset curves
- Performance modeled with biquadratic COP equation (Todb, Telt)
- Reference COP = 2.3; Max COP = 4.0
- Seasonal COPs between 2.4 and 2.6, depending on scenario






#### Rezultati: soliter (E6) / Results: High-Rise Building (E6)

- Adjusted baseline heating demand: 102.2 kWh/m<sup>2</sup>
- ECM Package (Imp. 2): drops to 25.2 kWh/m<sup>2</sup>
- Overall 75% reduction in heating demand
- Hybrid heating saves additional 27–30% site energy
- Infiltration reduction and system modernization especially impactful
- Suitable for buildings with lower energy intensity but high leakage



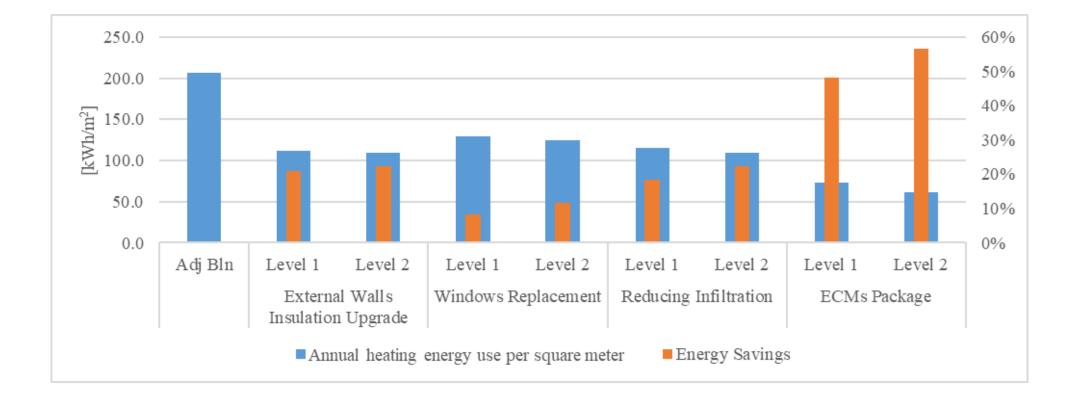
### Rezultati: soliter (E6) / Results: High-Rise Building (E6)







#### Rezultati: lamela (D4) / Results: Lamella Building (D4)


- e Adjusted baseline: 206.9 kWh/m<sup>2</sup>
- **C** ECM Package (Imp. 2): 61.1 kWh/m<sup>2</sup>  $\rightarrow$  57% savings
- Hybrid system adds ~38% energy savings on site
- Larger building envelope = greater potential for insulation benefit
- Highlights importance of combining envelope and system improvements





### Rezultati: soliter (E6) / Results: High-Rise Building (E6)







14 - 17. april 2025, Hotel Zlatibor Resort, Zlatibor



- **e** ECM packages highly effective for both building types
- Hybrid heating systems further amplify savings

| Building Type  | Adj. Baseline | After ECMs  | Total Reduction | + Hybrid System  |
|----------------|---------------|-------------|-----------------|------------------|
| High-Rise (E6) | 102.2 kWh/m²  | 25.2 kWh/m² | 75%             | +30% site energy |
| Lamella (D4)   | 206.9 kWh/m²  | 61.1 kWh/m² | 57%             | +38% site energy |

|                               | High Rise | Building  | Lamella Type<br>Buildings |           |
|-------------------------------|-----------|-----------|---------------------------|-----------|
|                               | Package 1 | Package 2 | Package 1                 | Package 2 |
| Total Heating Energy [kWh]    | 187,546   | 114,189   | 331,804                   | 276,228   |
| District Heating Energy [kWh] | 91,113    | 60,867    | 124,367                   | 103,454   |
| ASHP Heating [kWh]            | 96,433    | 53,322    | 207,437                   | 172,775   |
| ASHP Electricity [kWh]        | 39,450    | 22,259    | 80,428                    | 67,364    |
| Seasonal COP [kWh]            | 2.44      | 2.40      | 2.58                      | 2.56      |
| Final Energy Savings [kWh]    | 56,984    | 31,063    | 127,009                   | 105,411   |
| Final Energy Savings [%]      | 30%       | 27%       | 38%                       | 38%       |

ENERGETIKA 2025

#### Najvazniji rezulati / Key Takeaways

- Combined ECMs cut heating use by 57–75%
- Hybrid systems reduce fossil energy use and boost efficiency
- Infiltration control critical in older concrete-panel buildings
- Envelope-only retrofits insufficient—systems must be upgraded too
- Dynamic BEM captures building behavior more accurately than static models





#### Politike i tržišna relevantnost / Policy and Market Relevance

<del>0};;9</del>

- Study supports strategic retrofits, not isolated measures
- Retrofit programs should include envelope + system incentives
- EU Renovation Wave and Energy Community framework provide funding channels
- Design tools like BEM essential for decision-makers and engineers



#### Zaključci / Conclusions



- Novi Beograd buildings have high retrofit potential
- Up to 75% heating reduction possible with deep retrofits + RES
- ASHP-DH hybrid systems suitable for transition zones
- Integrated retrofitting is cost-effective and scalable
- Future work: cost analysis, occupant behavior, PV and solar thermal integration



#### Zahvalnica / Acknowledgment



- This research is supported by the Science Fund of the Republic of Serbia, #GRANT No. 4344, Forward-Looking Framework for Accelerating Households' Green Energy Transition - FF GreEN
- Contact: <u>dmanic@mas.bg.ac.rs</u>
- ORCID IDs available for all authors



# HVALA NA PAŽNJI! Thank you for your attention!

# Kontakt podaci autora

Ime Prezime Organizacija **E-mail** 



## ENERGY ENERGETIKA 2025

14 - 17. april 2025, Hotel Zlatibor Resort, Zlatibor

